Chapter 4 – Making Light Work Harder in Biology  157

the tip was moved back from the sample by just 1 nm. Estimate the radius of curvature

of the AFM tip.

4.14 If a 50 nm diameter nanobead can just be detected using laser dark-​field, which relies

on Rayleigh scattering, with a maximum sampling frequency of 1 kHz, estimate the

minimum time scale of a biological process that could in principle be investigated

using the same instrument but to monitor a biomolecular complex of effective diam­

eter of 10 nm, assuming the nanobead and biomolecules have similar refractive

indices.

REFERENCES

KEY REFERENCE

Thompson, R.E., Larson, D.R., and Webb, W. (2002). Precise nanometer localization analysis for indi­

vidual fluorescent probes. Biophys. J. 82:2775.

MORE NICHE REFERENCES

Appelhans, T. et al. (2012). Nanoscale organization of mitochondrial microcompartments revealed by

combining tracking and localization microscopy. Nano Lett. 12:610–​616.

Badieirostami, M. et al. (2010). Three-​dimensional localization precision of the double-​helix point

spread function versus astigmatism and biplane. Appl. Phys. Lett. 97:161103.

Balzarotti, F. et al. (2016) Nanometer resolution imaging and tracking of fluorescent molecules with

minimal photon fluxes. Science 355:606–​612.

Benitez, J.J., Keller, A.M., and Chen, P. (2002). Nanovesicle trapping for studying weak protein

interactions by single-​molecule FRET. Methods Enzymol. 472:41–​60.

Betzig, E. et al. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science

313:1642–​1645.

Booth, M. (2014). Adaptive optical microscopy: The ongoing quest for a perfect image. Sci. Appl.

3:e165.

Broxton, M. et al. (2013). Wave optics theory and 3-​D deconvolution for the light field microscope.

Opt. Exp. 21:25418–​25439.

Burnette, D.T. et al. (2011). Bleaching/​blinking assisted localization microscopy for superresolution

imaging using standard fluorescent molecules. Proc. Natl. Acad. Sci. USA 108:21081–​21086.

Chiantia, S., Kahya, N., and Schwille, P. (2007). Raft domain reorganization driven by short-​ and long-​

chain ceramide: A combined AFM and FCS study. Langmuir 23:7659–​7665.

Churchman, L.S. et al. (2005). Single molecule high-​resolution colocalization of Cy3 and Cy5 attached

to macromolecules measures intramolecular distances through time. Proc. Natl. Acad. Sci.

USA 102:1419–​1423.

Cissé, I. I. et al. (2013). Real-​time dynamics of RNA polymerase II clustering in live human cells.

Science. 341:664–​667.

Cox, S. et al. (2012). Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat.

Methods 9:195–​200.

Dertinger, T. et al. (2009). 3D super-​resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad.

Sci. USA 106:22287–​22292.

Faulkner, H.M. and Rodenburg, J.M. (2004). A phase retrieval algorithm for shifting illumination.

Appl. Phys. Lett. 85:4795–​4797.

Friedl, P. et al. (2007). Biological second and third harmonic generation microscopy. Curr. Protoc. Cell

Biol. 4:Unit 4.15.

Gordon, M.P., Ha, T., and Selvin, P.R. (2004). Single-​molecule high-​resolution imaging with photo­

bleaching. Proc. Natl. Acad. Sci. USA 101:6462–​6465.

Gustafsson, M.G. (2000). Surpassing the lateral resolution limit by a factor of two using structured

illumination microscopy. J. Microsc. 198:82–​87.